
www.manaraa.com

DOCUMENT RESUME

ED 278 707 TM 870 134

AUTHOR Fi%ri, Larry
TITLE ThS Importance of Invariance Procedures as against

TeSts of Statistical Significance.
PUB DATE 007 86
NOTE 25t,,; Paper presented at the Annual Meeting of the

$i01.-South Educational Research Association (Memphi5,
TN, NoveMber 20, 1986).

PUB TYPE 5pSeches/Conference Papers (150) -- Reports -
Ovkluative/Feasibility (142)

EDRS PRICE OFOl/PC01 Plus Postage.
DESCRIPTORS Cofelation; Hypothesis Testing; *Multiple Regression

Anhlysis; Multivariate Analysis; Predictor Variables;
fleSearch Methodology; *Social Science Research;
1Statistical Significance

IDENTIFIERS 1C0sS Validation; Null Hypothesis; Research
geWication

ABSTRACT
A %rowing controversy surrounds the strict

interpretation of Statistical significance tests in social research.
Statistical signifkcance tests fail in particular to provide
estimates for the Stability of research reSults. Methods that do
provide such estimhtes are known as invariance or cross-validation
procedures. Invarihnce analysis is largely an untested science which
is applied to detemine how stable the statistical results are likely
to be across diffeent samples. It can be employed with any
parametric procedue. The details of invariance analysis vary
according to the aSalytic technique employed. Cross-validation
procedures approprkate for multiple regresSion and its multivariate
extension, canonichl correlation analysis, are discussed in this
paper, and a concrkte example is presented. (Author/JAZ)

******************A****************************************************
Reproductions supplied by EDRS are the best that cafi be made

from the original docuMent.
*****************************************1,**********************#:*****



www.manaraa.com

THE IMPORTANCE OF INVARIANCE PROCEDURES AS AGAINST

TESTS OF STATISTICAL SIGNIFICANCE

Larry Fish

University of New Orleans

Paper presented at the annual meeting of the Mid-South
Educational Research Association, Memphis, Nov. 20, 1986.

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

U.S. DEPARTMENT OF EDUCATION
Office of Educahonal Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

XeThis document has been reproduced as
received Iron, the person or organization
originating it

0 Minor changes have peen made to improve
reproduction

Points of view or opinions stated in this docui
ment do not necessarily represent official
OE RI position or Pohcy

2

BEST COPY AVAILABLL



www.manaraa.com

AB ST RACT

A growing controversy surrounds the strict interpretation of

statistical significance tests in social research. Statistical

significance tests fail in particular to provide estimates for

the stability of research results: Methods that do provide such

estimates are known as invariance or cross-validation procedures,
and they can be applied in most analyses. Cross-validation

procedures appropriate for multiple regression and its

multivariate extension, canonical correlation analysis, are

discussed in this paper, and a ..;oncrete example is presented.
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If we take in our hands anv volume of school
metaphysics, for instance, let us ask, 'Does
it contain any abstract reasoning concerning
quantity or number? No. 'Does it contain any
experimental reasoning concerning matter of
fact and existence?' No. Commit it then to
the flames, for it can contain nothing but
sophistry and illusion.

--David Hume (quoted in Will
Durant, The Story of
Philosophy.)

Statistical significance testing is the "experimental

reasoning" of choice among most researchers today, and while its

absence in an empirical study may no longer be cause for

commitment to flames, it may result in notices of relection from

publishers or from dissertation committees. Nearly 30 years ago,

however, Selvin. (1957) publicly questioned the value of

statistical significance testing as an inferential tool in social

research. Selvin's article initiated a controversy which

continues to this day, with increasingly formidable artillery

ranged on the side of significance testing's opponents.

The philosophy of statistical significance testing assumes

an abstra-t simplification of the reality in which social

scientists are interested. In a universe of human behavior

shaped by complex relationships among large numbers of variables,

the statistical significance test can only provide a binary

solution--that is, a simple "yes or no" answer--to a single

question of relatively little inherent interest--is the null

hypothesis to be rejected?

The logic of statistical significance testing is at first
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compelling, for it is based on the perfectly reasonable

assumption that the larger two random sa.v are, the closer

should be their means an any measure of in. t, plovided that

the samples are from the same populati. However, the

mathematical dependence of statistical sis Te upon sample

size can make even negligible research results appear

"important." Carver (1978) observed that "a mean difference that

is small and not significant from a research :tandpoint can be

statistically significant just becuse enough subjects were used

in the experiment to make the result statistically rare under the

null hypothesis" (p. 388).

The typical null hypothesis, which postulates the absence of

"variance explaiffed," is usually of little inherent interest.

Furthermore, rejecting a null hypothesis is generally done on the

basis of criteria--for example, the 5% significance levelwhich,

however reasonable they may be, are nonetheless arbitrary. Too

much light focused on the "significance" of a null hypothesis can

leave the most meaningful implications of an experiment in total

.darkness. Lykken (1968) warned that "[Finding statistical

significance] is never a sufficient condition for concluding that

a theory has been corroborated, that a useful empirical fact has

been established with reasonable confidence--or that an

experimental report ought to be published" (p. ).

Another problem confronted in statistical significance

testing is that, as Cotton (1967, p. 57) pointed out, the null

5
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hypothesis in social research is never wrong: rarely, if ever,

will two variables share a correlation coefficient exactly equal

to zero. Cotton argued that "accepting [a null hypothesis]

merely expresses a belief that the averge difference is near

zero" (p. 57), but as alredy noted, even average differences that

are "near zero" can be forced to assume unwarranted significance

when samples are large enough. Furthermore, apart from the fact

that it usually cannot he wtong, the null hypothesis in any given

experiment is but one of an infinite number of possible research

hypotheses, and rarely is it the most illuminating one.

The most interesting research results are those which,

however significant statistically, can be generalized from a

sample to a larger population. Small relationships that are

consistent over samples are of potentially greater theoretical

interest than are pronounced relationships that can be obtained

for only one or two samples. Of course, the ideal research

result would be large relationships that are consistent over

samples. However, Carver (1q78) has argued that statistical

significance is not an index of reprodt:oibility: statistical

significance at the level P does not necessarily imply a

probabil4ty of (1 - P) that another researcher following the same

procedures will obtain the same results. The confounding of

statistical significance and reproducibility, argued Carver, is

one of three major prevailing misconceptions about statistical

significance testing, the other two being that a statistical

significance level represents the probability that results were

obtained by chance, and that it represents the probability that
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the null hypothesis is true.

Obviously, the only genuine way to establish the

replicability of research results is actually to repreat the

study on as many samples as possible. Unfortunately, this is

rarely practical. However, the researcher can still obtain an

estimate of the stahility of his results across samples by

employing so-called invariance or cross-validat4on procedures.

These procedures are the subject of the disclsioa that follows.

The logic of invariance analysis was summarized by Fish

(1986) as follows:

[Invariance procedures) attempt to determine how stable

the statistical results are likely to be across

different samples. In the typical invariance procedure

an analysis is performed separately on each of two

subgroups into which the study sample has been divided,

and the results are compared. When the results of an

analysis are not comparable--i.e., not invariant--

serious doubts about the generalizability of the results

are in order. (pp. 65-66)

Apart from its value to theory building, a successful

invariance analysis will create confidence that analytic results

can be employed for practical ends. "Double cross-vavlidation,"

argue Kerlinger and Pedhazur (1973), "is strongly recommended as

the most rigorous approach to the validation of results from

regression analysis in a predictive framework" (p. 284).
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Invariance procedures can be employed profitbly with any

parametric procedure. The details of invariance analysis vary

according to the analytic technique employed, and because

invariance analysis is still a relatively young technique, there

is ample scope for imaginitive applications. The remainder of

this paper will focus on standard cross-validation procedures

that can be employed with multiple regression and with its

multivariate gen:?ralization, canonical correlation analysis. A

concrete example will be discussed.

Invariance procedures for multiple regression

Recall that when there is one dependent variable y and two

ormore independent variables x(i) multiple regression analysis

computes for each case (person) a composite score y' which is

equal to a linear combination of that case's values on the

independent variables, as follows:

Yeix
4 7 (1)

For the entire study sample, the squared correlation coefficient

between the composite scores and the actual values of the

dependent variable is a measure of effect size--that is, the

proportion of variance of the dependent variable that is shared

with the independent variables.

The invariance procedure for multiple regression consists of

the following steps:
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1) The original sample is randomly divided into two

invariance groups. Ideally, these two groups are of unequal size

so as to obviate the objection that a satisfactory measure of

invariance is dependent upon a particular sample size.

2) Within each of the two groups, all variables ara

separately standardized into z-scores and independent regression

equations are computed. For each case, an invariance composite

score (y'(1,1) for cases in group 1, y'(2,2) for cases in group

2--the meaning of the double subscript will become clear shortly)

is computed from the appropriate equation.

Group 1:

(31. = y

Group 2:

.. 2.P2
J (2, 3)

3) We now proceed to establish the invariance of the

multiple regression equation computed for invariance group 1. We

have alredy computed a se-t of composite scores y'(1,1) for the

cases in this group. We now compute a second set of composite

scores for each case, y"(7.2), using the beta-weights computed

for invariance group 2. ehis is the key step of the invariance

procedure.

(4)

The subscript of this new composite score refers to the fact that

group 1 data were applied to group 2 regression coefficients.

Throughout this paper, the subscript ij appearing below any

9
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composite score or correlation coefficient means that group i

data were applied to group j weights. (Recall that earlier,

Y'(1,1) referred to composite scores computed from group 1 data

dubstituted into the group 1 regression equation.) However. when

the subscript ij appears below (3 or x, it refers to group i,

independent variable number j.

4) For group 1 we may now compute two multiple regression

coefficients: the group's own "genuine" coefficient R(1,1)

between the set of y and the set of y'(1,1), and an invariance

correlation coefficient R(1,2) between the set of y and the set

of y'(1,2). R(1,2) cannot exceed R(1,1) because the latter is

the mathematical optimum for group 1, but ideally the two

coefficients will be very close. The difference between the

squares of these two coefficients, R(1,1) - R(1,2) (recall that

only squared correlation coefficients can be meaningfully

compared) is an invariance estimate. The closer this value is to

zero the more stable the regression results mav be assumed to

be across samples. The correlation coefficient between the sets

of composite scores y'(1,1) and y'(1,'4) may also be taken as an

invariance estimate.

Naturally the procedures outlined above can be repeated with

the roles of groups 1 and 2 reversed--that is, group 2 data can

be substituted into the group 1 regression equation, and an

invariance estimate computed for the group 2 regression equation.

This would complete the invariance procedure known as "double

cross-validation."

10



www.manaraa.com

8

Some comments are in order here. For one thing, it may be

objected that the Procedure decribed above establishes the

invariance of the two group regression equations, not of the

omnibus equation (1) that is presumably of primary interest.

This objection has some merit, and reflects the status of

invariance analysis as an imperfect substitute for genuine

replication. However, both Mosier (1951) and Kerlinger and

Pedhazur (1973) have argued that when the results of double

cross-validation are satisfactory the omnibus regression equation

may be confidently employed for predictive purposes. Presumably

it may also then be used for theoretical purposes as well.

It may also be argued that no specific criteria were offered

in the above discussion for evaluating the invariance estimates.

This omission was deliberate, for no such criteria yet exist, As

mentioned above, invariance analysis is a relatively young

procedure, and many avenues remain to be explored. Thompson

(1986), for example, has derived te'st criteria for invariance

estimates computed for factor analysis. However, in some

respects it is illogical to test the statistical significance of

results that in some senses are meant to replace significance

testing.

One other item of useful information that can be derived

from invariance analysis concerns multiple R. As mentioned above,

multiple R is a mathematical optimum for a given sample, and as

such it is a biased estimate that capitalizes on what Mosier

called the "idiosyncracies" of the sample. Naturally a more

11_
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dependable estimate of multiple R for the target population would

be desirable. Though no precise means yet exist for computing

this more dependable estimate from invariance data, Mosier

suggested that the mean of an invariance group's actual squared

multiple Rand t-,e square of its invariance R might be taken as a

prc,,isional estimate.

Invariance procedures for canonical correlation analysis

Before discussing invariance procedures in canonical

correlation analysis, it would be useful to recall that canonical

correlation analysis is a multivariate generalization of multiple

regression. Indeed, as argued in Thomson (1984), all parametric

techniques are special cases of canonical correlation. Canonical

correlation is the appropriate analytic technique when each

variable set--predictor (independent) and criterion (dependent)

variables--hastwoormore elements.
/ I !

As in multiple regression, canonical correlation analysis

computes for each case a predictor composite value p equal to a

linear combination of the independent variables, x(i).

Analogously, it computes a criterion composite value q' equal to

a linear combination of the dependent or criterion variables,

y(i). Naturally, as in multiple regression, the same function

coefficients are used for all the cases in the sample.

Predictor composite value:

1c.

Criterion composite value:

biyi q (5, 6)
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The correlation coefficient Rc between the set of Predict(

composites p and the_ set of criterion composites q' is tl

canonical correlation coefficient. According to ThompsOn (1984

"a squared canonical correlation coefficient indixates ti

proportion of variance that the two composites derived from tl

two variable sets linearly share" (p. 14). It should be clez

that this squared canonical correlation coefficient is the anal(

of multiple R squared in regression analysis.

The two linear equations (equations 5 and 6) which giv(

respectively, the predictor and criterion composite oores al

known together as a canonical function. The linear coefficieni

of a canonical function are derived so as to maximize the shar(

variance between the two composites for any function. It shou]

be noted that more than one canonical function may be derived j

an analysis, the number of such functions being equal to th

number of variables in the smaller of the two variable sets. Ea(

canonical function derived after the first maxiltizes th

explained portion of variance not vet accounted for by aty Of tl

previously derived functions. The reader interested ill pursuir

the logic of canonical correlation analysis furthet shoul

consult Thompson, 1984.

The logic of invariance analysis in canonical oorreletion

essentially the same as for multiple regression, disoused abov(

Once again, the sample is randomly divided into two tnYarianc

groups of unequal size. Within each of these two groups, th

values of all variables are converted to z-soore forM an

1 3
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independeryt ceponical correlation analyses are conducted, because

several cAncinical functions may De derived, it may be Ileessarv

to repeat the invariance procedItIta described below on az Many of

those fu/ictions as are considered to be statisticlly or

educationklly yignificant.

Let os assume, then, that oithin each invariance Iroup we

have derivta a canonical function, as follows:

Group 1:

Predictor coOposite: Criterion compositzt

blgli = qii (7,

Group 2:

Predictot conPosite: Criterion compositzl

40c2i " P2.2 b2iY2i im (42 (, 10)

In the abc,V0 equations, a(k,i) b(k,i) represent respeettvely

the standateized predictor arld the standardized ctit%rion

function cAefficients derived foe invariance group k and yArtable

i. In syla)ols representing coMposite scores and culWlical

correlatiOn coefficients (that is, the letters p', q' 01Ad pc),

the double subscript ij means that the coefficient in Tie%tion

14
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was derived from group i data using group j coefficients. This

is the same notational format that was used earlier in the

discussion of invariance for multiple regression.

We shall now investigate the invariance of the group 1

canonical furIction, always bearing in mind that the same

procedure shoucl be applied afterwardS to the group 2 function as

well. Thus within group 1, two more sets of composite scores,

p'(1,2) and q-(1,2), will be computed using group 1 data but

group 2 functiOn coefficients, as follOws:

bzjx2j

A "new" canonial 'correlation coefficient, Rc(1,2), is computed

for the two rie,/ sets of composite scores, the set of p"(1,2) and

the set of q"(1,2)1 Because Rc(1,1) i$ the mathematical optimum

for group 1, it must be at least as large in abs()lute valae as

Rc(1,2). The qifference between the squares of Rc(1,1) and

Rc(1,2) is an invariance estimate for the group 1 canonical

function. As i the case of multiple regression, this estimate

will have a "IA5t case" value of zero and a "worst case" value of

1.

The reac3ek should note that the invariance procedure for

canonical corPelation analysis is analogous in almost every

detail to the Atocedure discussed above for multiple regression;

only the vocabulary is different. In fact, if the set of

criterion variOlee in canonical correlation analyiss contains
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only one member y, then canonical correlation analysis reduces to

multiple regression. The original dependent variable takes the

place of the criterion composite, and multiple R takes of place

of the canonical correlation coefficient.

An illustrative examgle

This section illustrates the computation of an invariance

estimate for canonical correlation analysis. Table 1 presents

the hypothetical data set that will be used. This data set is

small enough so that the reader, if interested, may follow the

discussion with pencil and paper. Each variable set, predictors

and criterion variables, contains two variables, and canonical

correlation analysis will therefore yield two functions. The

invariance of only the first function will be discussed below;

the interested reader may wish to apply invariance procedures to

the second function an an exercise.

The first step of the invariance procedure is to divide the

sample into two invariance groups. for convenience, the first

five cases of the hypothetical data set have been placed into

group 1, and the second five into group 2, though ideally two

invariance groups should be randomly assigned and of unequal

size. Table 2 presents the values of the variables ater being

converted to z-score form within each group.

The aext step of the procedure is to compute separate

canonical correlation analyses for each of the two invariance

groups. This can be done effectively only with a computer.

1 6
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A complete canonical correlation analysis yields a considerable

amount of data; of these data, only the standardized function

coefficients are immediately relevant to our invariance

procedure. These coefficients are presented in Table 3.

Table 4 presents the data that will be used to compute an

invariance estimate for the first canonical function in group 1.

The first two columns of Table 4 represent respectively, for each

invariance group, the predictor and criterion composite scores as

computed from equations 7 - 10. The third and fourth columns

present the invariance composite scores which, within each group,

were computed from the other group's equations (equations 11 and

12 for group 1). The following four equations illustrate how

these values were Computed for case 1, group 1.

Predictor composite:

( 0.971)(-0.878) ( 1.146)( 1,321) . 0.661

Criterion composite:

( 1.373)( 0.309) + ( 0.750( 0.288)-m 0.641

Invariance predictor composite:

( 0,0142)(-0,878)- + ( 0,.989)( 1,321) 1,269

Invariance criterion composite:

( 1.174)( 0.309) + (-0.249)( 0.288) m 0.291

In the above equations, the data came from Table 2, and the

1 7
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coefficients from Table 3.

We now have all the data necessary to compute the following

four correlation coefficients:

1) Rc(1,1): the "actual" canonical correlation coefficient

for group 1; the correlation coefficient between group 1

predictor and criterion composite scores (Table 4, columns 1 and

2).

2) Rc(1,2): the invariance correlation coefficient for group

1; the correlation coefficient between group 1 invariance

predictorand invariance criterion composite scores. (Table 4,

columns 3 and 4.)

3) Rc(2,2): the "actual" canonical correlation coefficient

for group 2; the' correlation coefficient between group 2

predictor and criterion composite scores (Table 4, columns 1 and

2).

4) Rc(2,1): the invariance correlation coefficient for group

2; the correlation coefficient between the invariance predictor

and the invariance criterion composite scores (Table 4, columns 3

and 4).

Table 5 presents the squares of these four correlation

coefficients in the following format:

IR
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Source of datar

Group 1

Group 2

Source of function coefficients:

Group 1 Group 2

Rc(1,1)

Rc(2,1)

Rc(1,2)

Rc(2,2)

16

The difference between the two entries in the first row is

an invariance estimate for function 1, group 1, while the

difference between the two entries in the second row is an

invariance estimate for function 1, group 2. Considering the

extremely small size of the data set, these invariance

estimates--0.424 and 0.357 for groups 1 and 2 respectively--are

not too bad. In a real research situation with a much larger

sample, one would naturally hope for smaller estimates.

Before closing it is worth pointing out again that

invariance analysis is still a young and largely untested

science, and the interpretation if invariance results is often a

matter of the researcher's judgment. The reader should remember

that invariance analysis has to do with the replicability, not

the interpretaion, of study results. Large effect sizes but poor

invariance results will generally indicate that the variables

included in the analysis do have a significant effect on the

behavior of the study sample but that this effect cannot

necessarily be generalized to the larger population.

1 9
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Case:

Table 1

Hypothetical data set

Predictor
Variables

A B

1 0 7

2 0 4

3 5 3

4 2 6

5 2 3

6 9 9

7 5 1

8 1 8

9 2 2

10 5 2

22

19

Criterion
Variables

X Y

4 7

2 5

3 9

7 2

0 8

9 7

3 0

8 7

4 0

5 8
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Table 2

Variable values standardized to z-score form

within invariance groups

Group 1:

Predictor Criterion
Variables Variables

A B X

1 -0.878 1.321 0.309 0.288

2 -0.878 -0.330 -0.464 -0.432

3 1.562 -0.881 -0.077 1.009

4 0.098 0.771 1.468 -1.514

5 0.098 -0.881 -1.236 0.649

Group 2:

6 1.470 1 216 1.236 0.644

7 0.192 -0.899 -1.082 -1.089

8 -1.086 0.952 0.850 0.644

9 -0.767 -0.635 -0.696 -1.090

10 0.192 -0.635 -0.309 0.892
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Table 3

Standardized canonical

Function 1

function coefficients

Function 2

Group 1: A 0.971 0.724

B 1.146 -0.393

X 1.373 0.302

Y 0.751 1.189

Group 2: A 0.042 1.028

B 0.989 -0.284

X 1.174 -0.958

Y -0.249 1.494

24
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Table 4

Actual and invariance composite scores

Group 1

Actual comp. score Invariance comp. score

Predictor Composite Predcitor Composite

1 0.661 0.641 1.269 0.291

2 -1.231 -0.961 -0.364 -0.436

3 0.507 0.651 -0.805 -0.342

4 0.977 0.880 0.766 2.100

5 -0.814 -1.211 -0.867 -1.613

Group 2

6 1.265 1.291 2.819 2.182

7 -0.881 -0.998 -0.844 -2.304

8 0.895 0.837 0.036 1.651

9 -0.660 -0.545 -1.471 -1.774

10 -0.620 -0.585 -0.541 0.245

Source of
data

Table 5

Sqaures of actual and invariance canonical

correlation coefficients

Group 1

Group 2

Source of function coefficients

Group 1 Group 2

0.952 0.526

0.635 0.992

25


