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ABSTRACT

A growing controversy surrounds the strict interpretation of
statistical significanée tests in social research. Statistical
significance tests fail in particular to prcvide estimates for
the stability of-research results; Methods that do provide such
estimates are known as invariance or cross-validation procedures,
and they can be applied in most analyses. Cross-validation
Procedures appropriate for multiple regression and its
multivariate extension, canonical correlation analysis, are

discussed in this paper, and a2 concrete example is presented.
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If we take in our hands anv volume of school
metaphysics, for instance, let us ask, “Does
it contain any abstract reasoning concerning
quantity or number?” No. “Does it contain anvy
experimental reasoning concerning matter of
fact and existence?” No. Commit it then to
the flames, for it can contain nothing but
sophistry and illusion.

~---David Hume ({quoted in Will
Durant, The Story of
Philosophy.)

Statistical significance festing is the "experimental
reasoning” of choice among most researchers today, and while its
absence in an empirical study may no longer be cause for
commitment to flames, it may result in notices of rejection from
publishers or from dissertation committees. Nearly 30 years ago,
however, Selvin (1957) publicly questioned the value of
statistical significance testing as an inferential tool in social
research, Selvin“s article initiated a controversy which
continues to this day, with increasingly formidable artillery
ranged on the side of significance testing”s opponents.

The philosophy of statistical significance testing assumes
an abstravt simplification of the reality in which social
scientists are interested. In a universe of human behavior
shaped by complex relationships among large numbers of variables,
the statistical significance test can only provide a2 binary
solution--that is, a simple "yes or no" answer--to a single
question of relatively little inherent interest--is the null
hypeothesis to be rejected?

The logic of statistical significance testing is at first



compelling, for it is based on the perfectly reasonable

assumption that the larger two random samy - are, the closer
should be their means an any measure of in.: - 't, provided that
the samples are from the same populati. However, the
mathematical dependence of statistical sig .. . -e upon sample

size can make even negligible research results appear
"important." Carver (1978) observed that "a mear difference that
is small and not significant from a research i tandpoint can be

statistically significant just becuse enough subjects were used

in the experiment to make the result statistically rare under the
null hypothesis" (p. 388).

The typical null hypothesis, which postulates the absence of
"variance explained," is usually of little inherent interest.
Furthermore, rejecting a null hypothesis is generally done on the
basis of criteria--for example, the 3% significance level--which,
however reasonable they may be, are nonetheless arbitrary. Too
much light focused on the "significance" of a null hypothesis can
leave the most meaningful implications of an experiment in total
.darkness, Lykken (1968) warned that "[Finding statistical
significance] is never a sufficient condition for concluding that
a theory has been corroborated, that a useful empirical fact has
been established with reasonable confidence--or that an
experimental report ought to be published" (o. ).

Another problem confronted in statistical significance

testing is that, as Cotton (1967, p. 57) pointed out, the null
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hypothesis in social research is never wrong: rarely, if ever,
will two variables share a correlation coefficient exactly equal
to zero. Cotton argued that "accepting [a null hypothesis]
merely expresses a belief that the averge difference is near
zero" (p. 57), but as alredy noted, even average differences that
are "near zero" can be forced to assume unwarranted significance
when samples are large enough. Furthermore, apart from the fact
that it usually cannot bhe wrong, the null hypothesis in any given
experiment is but one of an infinite number of possible research
hypotheses, and rarely is it the most illuminating one.

The most interesting research results are those which,
however significant statistically, can be generalized from a
sample to a larger population. Small relationships that are
consistent over samples are of potentially greater theoretical
interest than are pronounced relationships that can be cbtained
for only one or two samples. Of course, the ideal research
result would be large relationships that are consistent over
samples. However, Carver (1978) has argued that statistical
significance is not an index of reproducibility: statistical
significance at the level P does not necessarily imply a
probability of (1 - P) that another researcher following the same
procedures will obtain the same results. The confounding of
statistical significance and reproducibility, arqued Carver. is
one of three major prevailing misconceptions about statistical
significance testing, the other two being that a statistical
significance level represents the probability that results were

obtained by chance, and that it represents the probability that



the null hyvothesis is true.

Obviously, the only genuine way to establish the
replicability of research results is actually to repreat the
study on as many samples as possible. Unfortunately, this is
racrely practical. However, the researcher can still obtain an
estimate of the stability of his results across samples by
employing so-called invariance or cross-validat‘on procedures.
These procedures are the subject of the disc'ision that fol lows.

The logic of invariance analysis was summarized by Fish

(1986) as follows:

[Invariance procedures] attempt to determine how stable
the statistical results are likely tc be across
different sampies. In the typical invariance procedure
an analysis is performed separately on each of two
subgroups into which the study sample has been divided,
and the results are compared. When the results of an
analysis are not comparable--i.e., not invariant--
serious doubts about the generalizability of the results

are in order. (pp. 65-66)

Apart from its value to theory buildinq, a successful
invariance analysis will create confidence that analvtic results
can be employed for practical ends. "Double cross-vavlidation,”
argue Kerlinger and Pedhazur (1973), "“is strongly recommended as
the most rigorous approach to the validation of results from

regression analysis in a predictive framework" (p. 284).
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Invariance procedures can be employed profitbly with any
parametric procedure. lThe details of invariance analysis vary
according to the analytic technique employed, and because
invariance analysis is still a relativeiy youndg technigue, there
is ample scope for imaginitive applications. The remainder of
this paper will focus on standard cross-validation procedures
that can be employed with multiple regression and with its
multivariate gen:ralization, canonical correlation analysis, A

concrete example will be discussed.

Invariance procedures for multiple regression

Recall that when there is one dependent variable y and two
ormore independent variables x(i),multipole regression analysis

computes for each case (person) a composite score v” which is

equal to a linear combination of that case’s values on the

independent variables, as follows:
; - /7
;é Aoy (1)
L

For the entire study sample, the squared correlation coefficient
between the composite scores and the actual values of the
dependent variagle is a measure of effect size--that is, the
proportion of variance of the dependent.variable that is shared
with the independent variables.

The invariance procedure for multivle regression consists of

the following steps:
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l) The original sample is randomly divided into two

invariance grouﬁs. Ideally, these two groups are of unequal size

so as to obviate the objection that a satisfactory measure of
invariance is dependent upon a particular sample size.

2) Within each of the two groups, all variables are

separately standardized into z-scores and independent regression

equations are computed. For each case, an 3invariance composite

score (y“(1,1) for cases in group 1, y°(2,2) for cases in group

2--the meaning of the double subscript will become clear shortly)

is computed from the appropriate equation.

Group 1: Group 2:

E é‘i Xyt 7“/ é P"J Ay >/'z‘: (2, 3)
J J

3) We now proceed to establish the invariance of the
multiple regression equation computed for invariance group 1. We

have alredy computed a set of composite scores y°(1,1) for tne

cases in this group. We now compute a second set of composite

scores for each case, y“(? 2), using the beta-weights computed
for invariance group 2. (his is the key step of the invariance

procedure.

/
X, = y
R 1 (4)
J
The subscript of this new composite score refers to the fact that
group 1 data were applied to group 2 regression coefficients.

Throughout this paper, the subscript ij appearing below any

3



A
-

composite score or correlation coefficient means that group i
data were applied to group j weights. (Recall that earlier,
¥y°(1,1) referred to composite scores computed from group 1 data
dubstituted into the group 1 regression equation.) However, when
the subscript ij appears below @' or X, it refers to group i,
independent variable number 1. |

4) For group 1 we may now compute two multiple regression
cqefficients: the group”s own "genuine" coefficient R(1l,1)

between the set of y and the set of v“(1,1), and an invariance

correlation coefficient R(1,2) between the set of y and the set

of y“(1,2). R(1,2) cannot exceed R(1,1) because the latter is
the mathematical optimum for group 1, but ideally the two
coefficients will be very close. The difference between the
squares of these two coefficients, R(i,lf - R(1,2?' (recall that
only squared correlation coefficients can be meaningful lv
compared) is an invariance estimate. The cioser this value is to
zero, the more stable the regression results mav be assumed to
be across samples. The correlation coefficieﬁt between the sets
of composite scores y“(1,1) and y*(1,%) may also be taken as an

invariance estimate.

Naturally the procedures outlined above can be repeated with
the roles of groups 1 and 2 reversed--that is, group 2 data can
be substituted into the group 1 regression equation, and an
invariance estimate computed for the group 2 regression equation.
This would complete the invariance procedure known as "double

cross-validation."

10
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Some comments are in order here. For one thing, it mav be
objected that the procedure decrihed above establishes the
invariance of the two group regression equations, not of the
omnibus equation (1) that is presumably of primary interest.
This objection has some merif, and reflects the status of
invariance analysis as an imperfect substitute for genuine
replication. However, both Mosier (1951) and Kerlinger and

Pedhazur (1973) have argued that when the results of double

cross-validation are satisfactory the omnibus regression equation
may be confidently employed for predictive purposes. Presumably
it may also then be used for theoretical purposes as well.

It méy also be argued that no specific criteria were offered
in the above discussion for evaluating the invariance estimates.
This omission was deliberate, for no such criteria yvet exist, As
mentioned above, invariance analysis is a relatively vyoung
procedure, and many avenues remain to be explored. Thompson
(1986), for example, has derived test criteria for invariance
estimates computed for factor.analysis. Howevér, in some
respects it is illogical to test the statistical significance of
results that in some senses are meant to replace significance
testing.

One other item of useful information that can be derived
from invariance analysis concerns multiple R. As mentioned above,
multiple R is a mathematical optimum for a given sample, and as
such it is a biased estimate that capitalizes on what Mosier

called the "idiosyncracies" of the sample. Naturally a more

11
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dependable estimate of multiple R for the target pooulation would
be desirable. Though no precise means vet exist for computing
this more dependable estimate from invariance data, Mosier
suggested that the mean oOf an invariance grour”s actual squared
multiple R and tie square of its invariance R might be taken as é

prcvyisional estimate.

Invariance procedures for canonical correlation analysis

Before discussing invariance procedures in canonical
correlation analysis, it would be useful to recall that canonical
correlation analysis is a multivariate generalization of multiple
regression. Indeed, as argued in Thompson (1984), all parametric
techniques are special cases of canonical correlation. Canonical
correlation is the appropriate analytic technique when each
variable set--predictor (independent) and criterion {dependent)
variables--ha;;w%ogmore elements.

As 1in multipie regression, canonical correlation analysis
computes for each case a predictor composite value p”° equal to a
linear combination of the independent variables, x(i).
Analogously, it computes a criterion composite value gq” equal to
a linear combination of the dependent or criterion variables,
y(i). Naturally, as in multiple regression, the same function

coefficients are used fer all the cases in the sample.

Predictor composite value: Criterion composite value:

- ' 5, 6
a;x; = p' by, = q (5, 6)



The correlation coefficient Rc between the set of vpredict:
composites p”“ and the set of criterion composites g* is tl
canonical correlation coefficient. According to Thompson (1984
"a squared canonical correlation coefficient indicates ti}
proportion of variance that the two composites derived from tl
twe variahle sets linearly share” (p. 14). It cshould be cle:
that this squared canonical correlation coefficient is the analc
of multiple R squared in regression analysis.

The two linear equations (equations 5 and 6) which giv
respectively, the predictor and criterior composite goores ai
known together as a canonical function. The linear cpefficient
of a canonical function are derived so as to maximize the Share
variance between the two composites for any function. It shoul
be noted that more than one canonical function may be darived i
an analysis, the number of such functions being eqyal to tt
number of variables in the smaller of the two variable sets. Eac
canonical function derived after the first maximiges th
explained portion of variance not vet accounted for bv any Of tl
previously derived functions. The reader interested in pursuir
the logic of canonical correlation analysis further shoul
consult Thompson,‘1984.

The logiz of invariance analysis in canonical correlation i
essentially.the same as for multiple regression, discugsaed above
Orice again, the sample is randomly divided into two invarianc
groups of unegual size. Within each of these two groups, th

values of all variables are converted to z-score form an

13



11

independent canonical correlatioh analyses are conducted, Bacause
several cAnonjcal functions may be derived, it may be netasgsary
to repeat the invariance pfocgduta described below on ag fliany of
those functions as are considered to be statistically or
educationally gignificant.

Let ys assume, then, that within each invariance gfoup we

have derived 3§ canonical function, as follows:

Group 1:
Predictol: composite: Criterion composita:
qa¥gy = el byy¥13 = aiy (7, 8)
i i
Group 2:
PredictoX composite: ) Criterion composite:
i‘ 225%X2; = P3p bos¥os = 63, (A, 10)
i i

In the abyve equations, a(k,i) and b(k,i) represent respectively
the stangaxdized predictor and the standardized criterion
function cpeffjcients derived foy invariance group k and yAryable
i. In sywbhoirs represeniing composite scores and can®nical
correlatifn coefficients (that is, the letters p”, g° and Rc),

the double¢ Subscript ij means that the coefficient in question

14
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was derived from group i data dsing group j coefficients. This
is the same Ngtational format that was ﬁsed earlier in the
discussion of ipvariance for multiple regression.

We shall now investigate the invariance of the group 1
canonical fuf¢tion, always bearing in mind that the same
procedure should be applied afterwards to the group 2 function as
well. Thus within group 1, two more sets of composite scores,
p“(1,2) .and g”(1,2), will be computed using group 1 data but
group 2 functiQp coefficients, as follows:

~ .
272" R ?ijZé =9l (11, 12)

J J
A "new" canoniQal correlation coefficient, Rc(1,2), is computed
for the two ney sets of composite scores, the set of p”(1,2) and
the set of g”(1l,2). Because Rc(1l,1) {5 the mathematical optimum
for group 1, it must be at least as large in absclute valne as
Rc(l,2). The Qjfference between the squares of Rc(l,1) and
Re(l,2) is an jnvariance estimate for the group 1 canonical
function. As i\ the case of multiple regression, this estimate
will have a "bAgt case™ value of zero and a "worst case” value of
1.

The readetx should note that the invariance procedure for
canonical corfeglation analysis is analogous in almost every'
detail to the Nrocedure discussed above for multiple regression;
only the vocabulary is different. In fact, if the set of

criterion variyples in canonical correlation analyviss contains
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only one member y, then canonical correlation analysis reduces to
multiple regression. The original dependent variable takes the
place of the criterion composite, and multiple R takes of place

of the canonical correlation coefficient,

An illustrative example

This section illustrates the computation of an invariance
estimate for canonical correlation analysis. Table 1 presents
the hypothetical data set that will be used. This data set is
small enough so that the reader, if interested, may follow the
discussion with pencil aﬁd parer. Each variable set, predictors
and criterion variables, contains two variables, and canonical
correlation analysis Wwill therefore vield two functions. The
invariance of only the first function will be discussed below;
the interested reader may wish to apply invariance procedures to

the second function an an exercise.

The first step of the invariance procedure is to divide the
sample into two invariance groups. For conveniance, the first
five cases of the hypothetical data set have been placed into
group 1, and the secend five into group 2, though ideally two
invariance groups should be randomly assigned and of unequal
size. Table 2 presents the values of the variables ater being
converted to z-score form within each group.

The next step of the procedure is to compute separate
canonical correlation analyses for each of the two invariance

groups. This can be done effectively only with a computer.

16
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A complete canonical correlation analysis yields a considerable
amount of data; of these data, only the standardized function
coefficients are immediately relevant to our invariance
procedure. These coefficients are presented in Table 3.

Table 4 presents the data that will be used to compute an
invariance estimate for the first canonical function in group 1.
The first two columns of Table 4 represent respectively, for each
invariance group, the predictor and criterion composite scores as
computed from equations 7 - 10. The third and fourth columns
present the invariance composite scores which, within each group,
were computed from the other group”s equations (equations 11 and
12 for group 1). The following four equations illustrate how
these values were computed for case 1, group 1.

Predictor composite:

( 0,971)(-0,878) # ( 1.,146)( 1.,321) = 0,661

Criterion composite:

( 1.373)( 0.309) + ( 0.751)( 0,288)-= 0,641

Invariance predictor composite:

Invariance criterion composite:

( 1.174)( 0,309) + (=0,249)( 0,288) = 0,291

In the above equations, the data came from Table 2, and the

17
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coefficients from Table 3.

We now have all the data necessary to compute the following
four correlation coefficients:

1) Rec(l,1): the "actual" canonical correlation coefficient
for group 1l; the correlation coefficient between group 1
predictor and criterion composite scores (Table 4, columns 1 and
2).

2) Rc(l,2): the invariance correlation coefficient for group
l; the correlation coefficient between group 1 invariance
predictorand invariance criterion composite scores. (Table 4,
columns 3 and 4.)

3) Rc(2,2): the "actual" canonical correlation coefficient
for group 2; the correlation coefficient between group 2
predictor and criterion composite scores (Table 4. columns 1 and
2).

4) Rc(2,1): the invariance correlation coefficient for group
2; the correlation coefficient between the invariance predictor
and the invariance criterion composite scores (Table 4, columns 3
and 4).

Table 5 presents the squares of these four correlation

coefficients in the following format:

18
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Source of function coefficients:

Group 1 Group 2
Source of datar
s Y
Group 1 Rc(1l,1) Rc(1,2)
| 2 2
Grcup 2 Rc(2,1) Rc(2,2)

The difference between the two entries in the first row is
an invariance estimate for function 1, agroup 1, while the
difference between the two entries in the second row is an
invariance estimate for function 1, group 2. Considering the
extremely small size of the data set, these invariance
estimates--0.424 and 0.357 for groups 1 and 2 respectively--are
not too bad. In a real research situation with a much larger
sample, one would naturally hope for smaller estimates.

Before closing it is worth pointing out again that
invariance analysis is still a young and largely untested
science, and the interpretation if invariance results is often a
matter of the researcher”s judgment. The reader should remember
that invariance analysis has to do with the replicability, not
the interpretaion, of study results. Large effect sizes but DOOr
invariance results will generally indicate that the variables
included in thé analysis do have a significant effect on the
behavior of the study sample but that this effect cannot

necessarily be generalized to the larger population,

19
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Table 1

Hypothetical data set

Predictor
Variables
A B
0 7
0 4
5 3
2 6
2 3
9 9
5 1
1 8
2 2
5 2

22
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Criterion
Variables
X Y
4 7
2 5
3 9
7 2
0 8
9 7
3 0
8 7
4 0
5 8
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Table 2
Variable values standardized to z-score form

within invariance groups

Predictor Criterion
Variables Variables
A B X Y
Group 1:
1 -0.878 i.321 0.309 0.288
2 . =0.878 -0.330 -0.464 -0.432
3 1.562 =-0.881 -0.077 | 1.009
4 0.098 0.771 1.468 =-1.514
5 0.098 -0.881 -1.236 0.649
Group 2:
6 1.470 1.216 1.236 0.644
7 0.192 -0.899 -1.082 -1.089
8 -1.086 0.952 0.850 0.644
9 -0.767 . -0.635 -0.696 -1.090
10 0.192 -0.635 -0.309 0.892

23




Table 3

Standardized canonical function coefficients

Function 1 Function 2
Group 1: A 0.971 0.724
B 1.146 ~0.393
X 1.373 0.302
Y 0.751 1.189
Group 2: A 0.042 1.028
B 0.989 -0.284
X 1.174 -0.958
Y -0.249 1.494

24
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Table 4

Actual and invariance composite scores

Actual comp. score Invariance comp. score
Predictor Composite Predcitor Composiée
Group 1
1 0.661 0.641 1.269 0.291
2 -1.231 -0.961 -0.364 -0.436
3 0.507 0.651 -0.805 -0.342
4 0.977 0.880 0.766 2.100
5 -0.914 -1.211 -0.867 -1.613
Group 2
6 1,265 1.291 2.819 2.182
7 -0.881 -0.998 -0.844 -2.304
8 - 0.895 0.837 0.036 1.651
9 -0.660 -0.545 -1.471 -1.774
10 -0.620 -0.585 -0.541 0.245
Table 5
Sqaures of actual and invariance canonical

correlation coefficients

Source of function coefficients

Group 1 Group 2

Source of  Group 1 0.952 0.526
data
Group 2 0.635 0.992




